Establishing Victoria's Ecological Infrastructure: Guidelines for Building Climate Future Plots

Sacha Jellinek & Elisa Raulings Greening Australia

Tanya Bailey

What are Climate Future Plots?

- Climate Future Plots are areas of revegetated and restored land which incorporate genetic and/or species diversity to enhance habitat resilience to a changing climate.
- Through the use of carefully selected species and provenances (seed sourced from different geographical locations), genetic diversity is maximised, increasing adaptive potential.
- Plots contain a mix of local and climate preadapted plant genotypes (such as seed from hotter and drier climates) to monitor over time.

Project Overview

Greening Australia & the Victorian Department of Environment, Land Water & Planning (DELWP) have developed guidelines for undertaking climate adjusted revegetation (Climate Future Plots).

- Project running from June 2018 June 2020
- Steering Committee (DELWP, CMAs, Universities, VNPA & Parks Vic)
- Funding for guidelines & workshops
- Linked to the Platform for Ecological Restoration Research Infrastructure (PERRI) – CSIRO

Achieving more with less – linking ecological restoration investments with ecological restoration research infrastructure

Suzanne M Prober, Linda Broadhurst, Guy Boggs, Martin F Breed, David Bush, A Jasmyn J Lynch, Fiona Dickson

"National Guidelines for Experimental Restoration Plantings" for release mid 2020

greeningaustralia.org.au

Objectives for developing Guidelines for Climate Future Plots

- 1. Understand the impacts of climate change on key revegetation species;
- 2. Understand how and when to incorporate genetic and/or species diversity into plantings;
- 3. Develop land management practices that build resilience (through diversity) to climate change;
- 4. Create climate adjusted seed production areas (SPAs) and climate resilient seed selections to restore plant communities in the future.

VICNATURE 2050

People helping nature adapt to a new climate

We can all help nature through a changing climate

HOME TEN THINGS

OUR PARTNERS

VicNature2050 is a growing partnership of organisations, including: Bio 21 institute, University of Melbourne; La Trobe University; Greening Australia; Arthur Rylah Institute for Environmental Research, Victorian National Parks Association; Royal Society of Victoria.

Supporters: Victorian Department of Environment, Land, Water and Planning; Parks Victoria..

Overview of Guidelines

- What are Climate Future Plots and why are they important
- What are the different aims of the Plots:

1. Creating climate resilient (re) vegetation in cleared and fragmented landscapes.

- 2. Introducing new plant genetics to enhance resilience into existing natural landscapes such as national parks.
- 3. Producing 'climate ready' seed from seed production areas (SPAs).

- 4. Establishing research plots to assess how plants survive grow and reproduce.
- What are the climate projections and how to choose the correct species and provenances (climate analogues)
- How to implement Climate Future Plots and things to consider
- How to monitor and manage revegetation data

Climate change impacts on plants

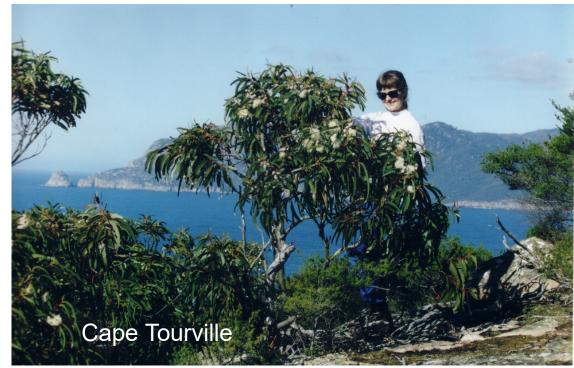
Climate change is expected to have influence on:

- Flowering, pollination, seed dispersal, seed production and viability
- Ability of plants to germinate and recruit into the landscape
- Adult plant survival

Declines of one species in turn influences the health of wider vegetation communities

Often little is known of plant lifecycles: Climate future plots will help gain this knowledge across species and across time

Why are climate future plots important?



F

Choice of seed (provenance) is important

- same species can vary widely
- differences are often genetic
- adapt to different environments

40 – 70 m tall Blue Gum (Eucalyptus globulus) <3 m tall

Local is best?

Dominant paradigm for ecological restoration Use locally sourced seed to:

- maintain current patterns of genetic variation
- avoid problems of:
 - poorly adapted seed and seedlings
 - genetic contamination of local populations
 - outbreeding depression

Land-use has changed

- Increased fragmentation
- Reduced genetic diversity in local populations
- Altered environmental processes (nutrient and soil communities)

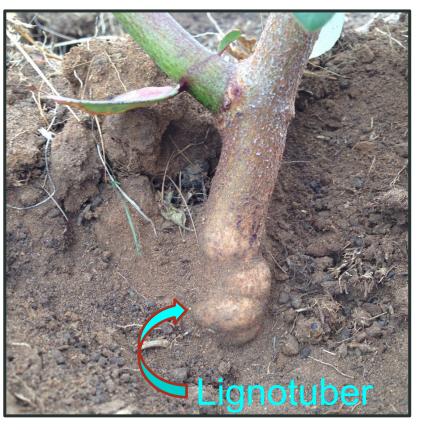
Climate is changing rapidly

Victoria is already experiencing the impacts of climate change:

Species must: adapt, migrate or die

Mienna Cider Gum dieback -Tasmanian Central Plateau




2000

Provenances vary in climate adaptations

Seedlings from hotter/arid provenances have larger lignotubers

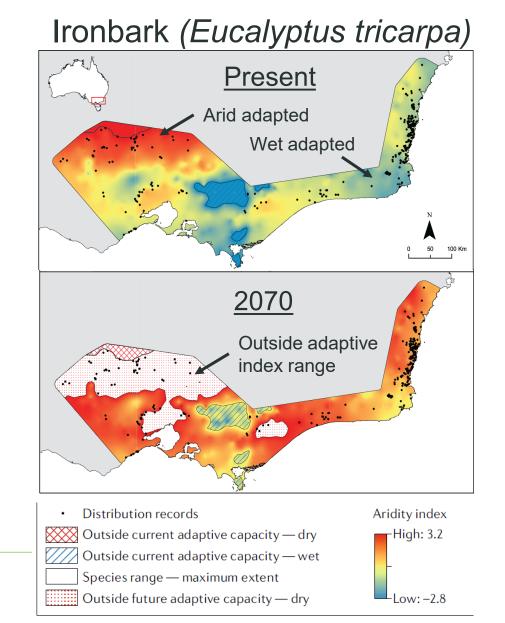
Snow Gum (E. pauciflora)

Such adaptations will likely be critical in the face of climate change

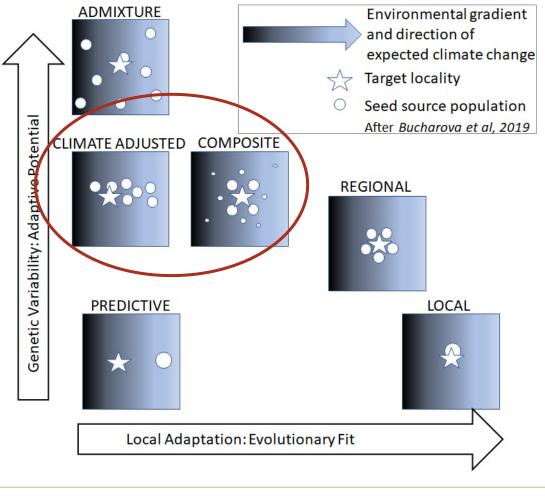
Future climates may change where species survive

Many species will experience increased aridity as climates change

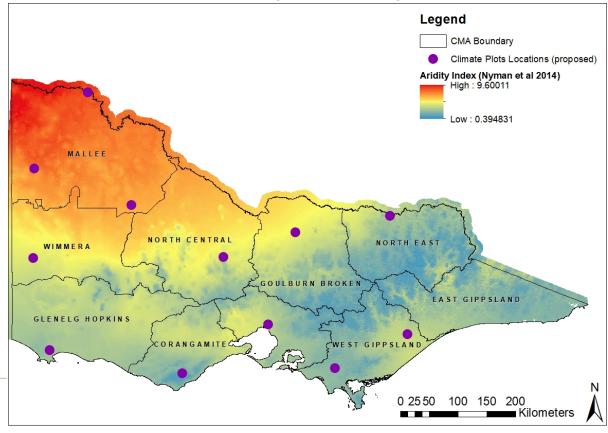
Aridity is a major factor associated with provenance adaptation in eucalypts


e.g. Ironbark (E. tricarpa)

- ability to adapt (McLean et al. 2013)
- genomic outliers (Steane et al. 2014)


Restoration plantings may benefit if we assist the migration of genetic material by supplementing local with arid adapted seed

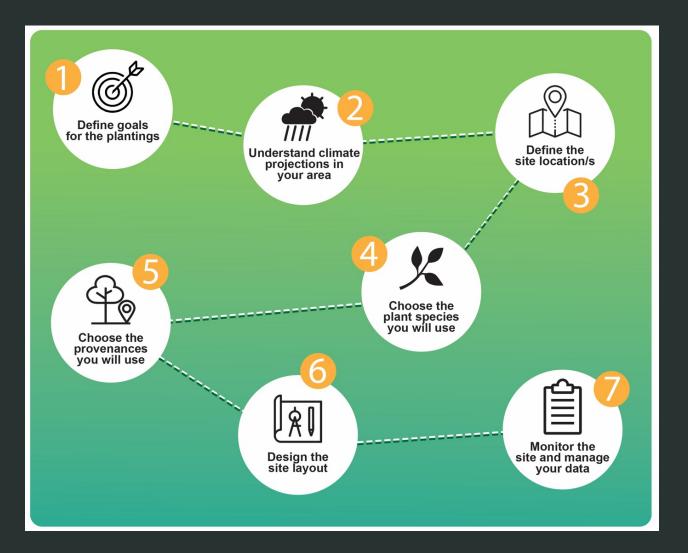
Climate adjusted provenancing



Provenancing strategies

Climate Futures Plots test the Climate Adjusted Provenancing strategy at a number of scales:

- Local
- Regional
- National (PERRI)



Benefits of Climate Future Plots

- Enhance conservation at the landscape scale by creating climate resilient habitat elements within the landscape which maintain ecosystem function in uncertain climate scenarios.
- Act as nursery sites for native vegetation due to their high genetic diversity.
- **Building knowledge** by testing predictions and proposed management strategies under a changing climate. Long-term studies are vital, as they help us distinguish between short-term events and long-term trends.
- Inform future adaptive management by showing how species respond to interventions. New knowledge and data informs improved practices.
- Enable community engagement and awareness of climate change effects by providing opportunities to work and learn together.

Establishing Victoria's Ecological Infrastructure: Guidelines for Building Climate Future Plots

A 7-step process for organisations and community groups to plan, establish and monitor Climate Future Plots